/ (NASA-TM~-85171) ABSTRACTS FOR THE SECCND §83-7.

!
|
|

INSTITUTE FOR COMPUTER APPLICATIONS IN

SCIENCE AND ENGINEERING (ICASE)

ABSTRACTS FOR THE

SECOND LANGLEY CONFERENCE ON SCIENTIFIC COMPUTING |

NUMERICAL METHODS FOR PARALLEL AND VECTOR PROCESSORS

LRARY (Y
MAY 25 1977

Lewis Library, NASA
Cieve!am’, Chio ’
8

CO-SPONSORED BY ICASE AND STAM

October 21 and 22, 1974

2685
IANGLEY CONFERENCE CN SCIENTIFIC CCEPUTING
NUMEEICAL METEODS FOR PARAILEL AND VECTOR

LE‘RBCESSORS {NASA) 42 p Unclas

D0/64 08738

‘Abstracts for the

Second Langley Conference on Scientific Computing:

Numerical Methods for Parallel and Vector Proégssors

Co-Sponsored by ICASE and SIAM

October 21 and 22, 1974

Author Index

Papers by the following authors are listed alphabetically by
first author. For multiple author papers, the first author is
given in parenthesis.

D. C. Adams

M. Apelkrans

F. G. Carty

A. K. Cline

R. L. Coleman

G. F. Corliss

J. N. Damoulakis

J. H. Ericksen

J. R. Flood (5. M. Yen)
P. 0. Frederickson

L., J. Hayes

D. E. Heller

L. Hyafil

L. C. Jackson (J. R. Schiess)
T. L. Jordan

R. Korn

T. Kishi

J. C. Knight

D, J. Kuck (A. H, Sameh)
H, T. Kung (also L. Hyafil)
J. J. Lambiotte, Jr.

T. Layman (A. H. Sameh)

. W. H. Liu

K. Madsen

. G. Margolis

. McCulley

K. Noor

C. Pease

. G. Poole, Jr. (J. C. Knight)

. R. Rice

F. Riesenfeld

. H. Sameh

R. Schiess

Stevenson (D. E. Heller)

S. Stone

C. Thompson

F. Traub (D. E. Heller, H. T. Kung)
G. Voigt (J. C. Knight, J. J. Lambiotte, Jr.)
J. Voigt (A. K. Noor)

C. Ward

S. Watanabe (S. M. Yen)

Wirsching (T. Kishi)

A. Wulf

M. Yen

Zaher (L. McCulley)

Donald C. Adams

Mail Stop 215-1

U.S. Army Air Mobility R&D Laboratory
Ames Directorate ‘

Moffett Field, California 94035

An Overrelaxation Algorithm for the ILLIAC IV

The potential speed increases of the ILLIAC IV make it a candidate for
overrelaxation problems. The goal was to find a parallel overrelaxation
algorithm that will converge as rapidly as the conventional algorithms (such
as SOR and SILOR) for the two dimensional transonic airfoil problem.

The procedure followed was to first program the SOR and SLOR algorithms
in FORTRAN for a CDC 7600. Each mesh point was updated as soon as a new

estimate was calculated, which is the conventional procedure for serial algo-
rithms.

The SOR algorithm was then altered such that a whole horizontal
line of new mesh point estimates was calculated before updating was done.
The SLOR algorithm was altered such that a new estimate for each point in
the mesh was calculated before updating was done. These alterations simu-
lated how the algorithms could be implemented on the ILLIAC IV. It was
found that by using the SOR and SIOR algorithms in the serial mode, the
optimal relaxation factor (alpha) was approximately 1.8. However, it was
found that the optimal value of alpha for these two algorithms in the
parallel mode was quite low. In fact, both algorithms (parallel mode)
elther converged very slowly or diverged for any value of alpha greater
than or equal to 1.

The main problem with these two algorithms in the parallel mode is the
following: the new estimate at any mesh point is a function of the four mesh
points surrounding it. In the serial case, two of these points are curreant
estimates and two are the result of the previous iteration. However, in the
parallel case, only one point is curxrent and three points are old.

The third method tried was the Skew algorithm which is essentially the
SOR with a different ordering scheme., An iteration step consists of calculating
new estimates of the mesh points along diagonal(s) rather than a horizontal
or a vertical linme. Utilizing the diagonals enables new estimate calculations
to utilize two new and two old estimates of surrounding points. Since there
is virtually no difference between the serial and parallel modes, only the
parallel mode was considered.

The Skew algorithm was programmed in CFD for the ILLIAC IV as well as
the CDC 7600, Using the CFDX translator, the CFD program was translated to
serial FORTRAN and then run on NASA-Ames' IBM 360/67 to check the results of
the CDC 7600 program. An actual run was successfully made on ILLIAC IV, whose
results were verified by the CDC 7600 progran.

The Skew algorithm gave results that were comparable to the SOR and SLOR
algorithms in the serial mode. ;

Mets Apelkrans
Department of Computer Sciences

University College
V8x j8, SWEDEN

A Highly Parallel Method for Elliptic Boundary Value Problems

In this paper we propose a method using the parallel-shooting technique to solve
elliptic boundary value problems on a rectangle. To be more specific let

(1) Uy + f(x,y,u,uy,uyy) =0

be an elliptic equation given on a rectangle in the xy- plane with boundary values u = g
given on the boundary. (1) is then approximated in the y- direction using finite-

difference- quotients of order p. This gives rise to a system of ordinary differential
equations ;

(2) Y w Hx,Y) =0,
where the Y- vector contains approximations for the solution u at distinct y- levels,

y, say, for 3=1,2,...m-l. Special care must be taken in order to handle the boundary
cdnditions. Next rewrite (2) into the following form

s 1
(3) Yi +k—zai(x,Y) yi = Gi(x,Y) , 1=1,2,...m-1.
Given an initial approximation for u (found e.g. with the standard 5-point formula
applied to a linearised version of (1)), we iterate in (3) according to the following
formula
+1)°7. 1 r+1 r
(h) Y(ir 1) 3 ai(x,Y(r)) Yi() =G1(x,Y()) , 1=1,2,...m-1, r=0,1...

These scalar equations are then solved using the parallel- shooting technidue in each
subinterval. r(?ne should note that generally one has to compute or store intermediate

values for . Let (4) be integrated with an initial- value method of order q { e.g. = p).

These calculations can be executed in parallel for each eguation in (14-) and also in parsllel
r+l

for each subinterval. The (r+l)st iterate Y(i) is then computed as the solution to &

tridiagonal system of order (2n-2). These (m-1) systems can be computed in parallel and
there is also a bit of parallelism in a tridiagonal system (see eg Traub, Iterative solution
of tridiagonal systems on parallel or vector computers, 1973). An obvious advantage of
this method is that the resulting linear systems always are tridiagonal, independent of the
approximation orders q and p . Furthermore, on a parallel- computer with enough CFU:s

each iteration- step can be performed very quickly.

F. G. Carty
Goodyear Aerospace Corporation
Axron, Ohio L4315

Unconstrained Optimization Algorithms without Derivatives on the STARAN

This paper describes algorithms which locate the minimum of a function f(x) in n vari-
ables and how their implementation can be enhanced by the capebilities of & parallel pro-
cessor such as the Goodyear Aerospace Corporation STARAN*. A brief description of the STARAN
architecture is given to aid those people not familier with it. The algorithﬁs under discus-
sion are limited to those algorithms which employ only function evaluations and univariate
searches in given directions, i.e. no derivatives need be computed. One such slgorithm is
described by D. Chazan and W. L. Miranker in "A Nongradient and Parallel Algorithm for Uncon-
strained Optimization" SIAM J. Control 8(1970) pp. 207-217. Their algorithm imeorporates
features in Powell's method and Zangwill's method. Another algorithm, based on Gram-Schmidt
orthogonalization, is described where knowledge of the Hessian matrix of £(x) is replaced by
employment of univariate searches. This algorithm, when used on a parsllel processor such
as the STARAN, has the following edvantages: (1) when f£{(x) is a quedratic function with
positive definite Hessian the algorithm converges (theoretically) to the minimum in a finite
number of steps, (ii) when £f(x) is comvex, f(x) is reduced after each iteration unless at a
minimum (iii) the best available approximation to the minimum is used at each step and (iv)

more than n processors can be used if they are available. Numerical exsmples will be given.

”y i
il 3 il

* v) '
T. M. Goodyear Aerospace Corporation, Akron, Ohio L4315

Alan K., Cline

ICABE

NASA Lengley Research Center
Hampton, Virginia 23665

A Lenczos Type Method
for the Solution of Large Sparse Systems of Linear Equations

A method for solving large; sparse, and unsymmetric systems of linear equatioﬁs will
be discussed. This method exploits an orthogonal bidiagonalization of the matrix and is
a derivative of the Lanczos idea for orthogonal tridiagonalization of symmetric matrices.
Operations are arranged so that only "operator knowledge" of the matrix is required. The
decomposition and solution proceed in a column-wise fashion so that thé'only necessary

storage is for several vectors of the same length as the solution.

The basic operations required by the algorithm are vector inner product,vscalar times
vector, and vector addition as well as the application of the linear operator and its trans-
pose to a vector. All but the last of these operations are well suited for parallel or
vector computation; efficient implementation on such computers requires that the last (i.e.,

application of the operator and its transpose) also be made efficient. The solution depends

on the nature of the operator itself.

Various modifications to the basic algorithm have been explored. At each step more in-
formation of the decomposition is gained; the first modification determines the approximate
solution yielding the minimal residual norm using this informetion. A second modification
deals with blocks of vectofs and a block bidiagonalization. This latter modification is
found to maintain the orthogonality of the decomposition to a higher»degree than the basic

algorithm.

Richard L. Coleman
Digital Equipment Corporation
Maynard, Massachusetts 01754

Simulating the Performance
of Gas Bearing Gyroscopes on the ILLIAC IV

Modern, high performance gyroscopes use gas bearings of various spiral groove config-
urations to support the spin axis member. The dynamic perfbrmance of these instrumeﬁts is
described by the time dependent Reynolds equation - a strongly nonlinear parabolic equation
- in two space variebles. All modern designs use spiral groove geometries which in the
asympfotic limit (as the number of grooves is large) by multiple scaling still yield the
same type of equation for the mean préssure distribution. For the type of environment these
gyroscopes are subjected to, it is necessary to solve for rapid pressure gradients both in
space and time. The importance of the topic lies in the question as to whether an instru-
ment can survive the expected shock and g loading. We have developed veriants of fractional
step methods with second order accuracy in time and at least second order accuracy spatially.
Since these are locally one dimensional schemes, they can be efficiently solved for a given
size problem on conventional computers; upon their introduction a factor of 10 improvement
in running time was obtained. This now maede feasible one degree of freedom simulations for
gas bearing gyroscopes. Now, however, with the possibilities of parallel processors the
locally one dimensional structure of these schemes can be fully utilized so that on a machine
such as the ILLTAC IV the theoretical factor of 64 can be achieved. This now mekes feasible
the full five degree of freedom simulations of these gyroscopes - allowing us for the first
time to corréctly predict the;r actual performence. It will also be shown how on eny par-
allel configuration with very modest méemory such séhemes can be applied. These techniques
combined with a parallel processor allow certain classes of large scale simulations to be
done which are of great importence in testing the feasibility of gyro designs where, because

of size constraints, overdesign is not permissible.

George ¥. Corliss

Department of Mathematics and Statistics

University of Nebraskae-Lincolun

Lincoln, Nebraska 68508 -

Paraliel Rootfinding by lagrange Interpolation

A class of rootfinding algorithms suitable for implementation on an array
processor like ILLIAC IV using inverse Lagrange interpolation is shown to have a
speed-up ratio proportional to the log of the number of processors used.

This agrees with the speed-up results found by W. L. Miranker in "Parallel
Methods for Approximating ‘the Root of a Function," IBM J. Res. Develop, 13(1967),
pages 297-301. Miranker requires each processor to compute a Lagrange interpola-
tion polynomial of a different degree, so his algorithm is not suitable for imple-
mentation on an array processor.

If each component of the vector Xi = (x 1, i 2,...,x N) converges to a and
8; = max{|a- -X; i,] 1,2,...,N}, then the sequence is said to have order of conver-
gence A if .
lim(-gn §,01% = 2.
_1~>-oo

The parallel rootfinding algorithms considered are generalizations of the.
simultaneous n - 2 degree methods given by John R. Rice in "Matrix Representations
of Nonlinear Equation Iterations - Applications to Parallel Computation,” Mathe-
matics of Computation, 25, 116(1971), pages 639-647. Assume that N processors
are available, Let X0 = (x0 13%g g2 ¥y N) be N initial approximations to the

2 2 k]

simple root o of f. Fix k satisfying 2 <k <N - 1. Choose N distinct subsets

AJ of the set {1,2,...,N} such that j ¢ AJ and AJ contains k elements. Each
processor constructs H (y), the inverse Lagrange- 1nterpolatlon polynomlal of
degree at most k-1 whlch satlsfles ' ' -

H (f(x)) = X, for s € A. and j = 1,2,...,N.

i,s? 3

k

Deflne X = Hj(O). If £ ¢ C" in a neighborhood of o, then each component of

i+1,3
X. converges to o and the method has order of convergence k. The proof is a

generallzatlon of that given for the sequential case in Ralston's A First Course
1n Numerical Analysis.

We use the definition of efficiency for rootfinding algorithms due to H. T.
Kung and J. F. Traub in “Computatlonal Complexity of One-Point and Multipoint
Iteration," Department of Computer Science, Carnegie-Mellon University, (1973):
log2 order of convergence
EFF =

.

number 6??paralle1 arithmetic
operations per iteration

Then we can choose the degree of the interpolating polyhomials, depending on the
number of arithmetic operations required to evaluate the function f, to optimize
the efficiency. When this parallel efficiency is compared to the optimal effi-
ciency of two classes of algorithms considered by Kung and Traub, the parallel
rootflndlng methods u51ng inverse Lagrange interpolation are shown to have an
assymptotic speed-up ratio proportional to logzN for functions which are very
costly to evaluate.

John N. Damoulakis

. Texas Instruments Incorporated
P. 0. Box 2237
Huntsville, Alabama 35804

The Advanced Scientific Computer and its Application to Optimization Theory of Large Real-Time Systems
This paper examines the applicability of a vector processor machine to numerical methods in
Mathematical Programming for large systems. A methodology utilizing the architecture and the vector
programming features of the Advanced Scientific Computer (ASC) is developed by establishing suitable
vectorial forms of numerical techniques to solve large optimal problems. The paper first examines
the classical first-order methods in Mathematical Programming, and then derives a unified methodology
for obtaining modifications of these methods, appropriate to this class of problems, for their effi-
cient implementation in vector oriented machines. '

Specifically, the general optimal problem

i=N i i f
Maximize: J = _TT[Pi(Xi)] E [ﬂ[ﬂji(yﬁ)]]
i=1 : =
=t =
:] i=N j=K =N
Subject to: E [Cixi + E [djiyjiJ < C*
i=1 =1 i=t :

> ca?
c1_p,d31_p

0<x{<xi* 3 and 0syji<yji*

is investigated, where the functions P;(xj) and Rji(in) are nonnegative, concave, monotonically in-
creasing and the constraints linear.

For the solution of this problem, first the applicability of the Marginal Return Optimization
Method is investigated (MROM). In this method, an iterative algorithm is devised which solves the
optimal problem with or without decomposition by a procedure altering one and only one variable at
each iteration. The technique is especially useful in cases where a discrete solution of the opti-
mal problem is sought. Then, the Gradient Method Techniques, adapted to these problems, are employ-
ed and the results are compared with the ones obtained from the Marginal Return Optimization Method.

Based on the properties of the objective function and the constraints, a combined algorithm is
proposed utilizing the principles of Gradient Techniques and the concepts of MROM. The objective
of this algorithm is to construct an efficient technique applicable to a contipuous er discrete pro-
blem, and suitable for real-time operation, where computer execution speed is important. The
algorithm does not decompose the original problem. It only utilizes the concavity condition of the
functions to establish the necessary optimal criteria.

In order to establish the relative performance of these algorithms, numerical examples involving
problems in resource allocation are provided. Particularly, the interest is in developing an effec-
tive operational system for the real-time environment. A1l algorithms are programmed in a way uti-
lizing the maximum efficiency of ASC vector instruétions. Typical problems involve a large number
of functions, Pj, Rjj (between 30 and 150). Execution time measurements of these algorithms on the
ASC are also provided.

James H. Ericksen
Laboratory for Atmospheric Research
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

- The Implementation of a Two Dimensional Convection Problem on ILLIAC IV Using Disk

A program to solve the Bénard-Rayleigh convection problem on ILLIAC IV using disk is described.
Two dimensional, 512 by 512 meshes are used. The problem is divided into two parts. First the prog-
‘nmostic equations are solved for temperature and vorticity. Then the stream function is calculated
using the vorticity. ‘

To solve the prognostic equations for time step T + 1, values on five meshes
are required: the vorticity at T and T-1, the temperature at T and 1-1, and the
gtream function at T. The finite difference schemes used allow row I of the tem-
perature or vorticity to be calculated whenever rows I-1, I and I+l of the meshes
are available. A queue is set up in memory which is divided into three sections.
Each section contains eight rows of each of the five meshes. The program calculates
gight rows in one section while it is writing from another section or reading from
the remaining section.

Calculating the stream function is more difficult, Direct methods have been developed to solve
Poisson's equation but they require the ability to access both rows and columns. Skewed storage is
commonly used to access rows and columns of meshes contained in memory. By using this type of stor-
age scheme on disk the I/0 time can be decreased. No matter what storage scheme is used the data
must be read and written to disk three times, once for the row operations, then for the column opera-
tions, and finally for the second set of row operations. As seen in Ericksen (p. 68) this portion
of the code is quite I/0 bound.

By using a method which doesn't require both row and column accessing from disk to solve
Poisson's equation most of the I/0 bound is eliminated. Hockney's Method with three levels of odd-
even reduction converts the 512 by 512 element system of equations into one 512 by 64 element system
and 448 systems with 512 elements each. The reduction into and the solution of the 512 element
systems is performed along with the calculation of the prognostic equations. The 512 by 64 element
system is solved without using disk. The data on disk needs to be read only once, when the prog-
nostic equations are calculated.

The most difficult part of implementing Hockney's Method is finding a parallel method for solv-
ing a 512 element tridiagonal system. Buneman's method as described in Hockney (p. 155) is used. It
is implemented in ASK with the ability to solve tridiagonal systems with 2°-1 elements, where 2<I<12.
A storage scheme is developed for this method to allow the PE's to access 64 elements in parallel
from a vector stored in PEM where the index for each element is m(ZJ)+n The J and the n are con-

stant for the 64 elements but the m has 64 different values.

Bricksen, J. H., 1972: Tterative and Direct Methods for Solving Poisson's Equation and Their
Adaptability to ILLIAC IV." Center for Advanced Computation, Document No. 60, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801.

Hockney, R. W., 1970: "The Potential Calculation and Some Applications." Methods in Computational
Phyiscs, 9: 136-211. . '

Ogura, M., M. S. Sher, and J. H. Ericksen, 1972: "A Study of the Efficiency of ILLIAC IV in Hydro-
dynamic Calculations." Center for Advanced Computation, Document No. 59, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801.

Paul 0. Frederickson
Lakehead University
Thunder Bay, Ontario

Fast Approximete Inversion of Large Elliptic Systems

We consider linear systems which are not only symmetric and positive definite, but
also have the same sparse structure és the linear systems associated with the uniform
partition discretization of boundary value problems in two or more variables. As the
discretization is refined, and the order un of the system becomes large, solution of the
system by the usual iterative methods such as SOR and its variants becomés inereasingly slow
and expensive, for their spectr;l radius tends to one. In contrast, the spectral radius of
the algorithm we discuss has & bound independent of n and, according fo empirical obser-
vation, in fact less than 1/2 for a large class of problems. The number of operations per
iteration is linear in n, and the algorithm is so well adapted to parallel computation
that the number of operations in an m-vector processor is bounded by a constant times
n/m + log,n.

The key step in the algorithm is a dyadic, or binary; collection algorithm with bi-
nomial coefficients as weights. In effect, a sequence of systems of lower order is ini-
tially constructed and then repeatedly solved, approximately. These are best approximate
systems in the variational sense, for the exesct solution to any would be the best approxi-

mate solution to any finer system after spline interpolation.

The algorithm is alread& effective on seriel computers, as several months of testing
on the Telefunken computer of the Leibniz Rechenzentrum in Munchen have shown. For ex-
ample, 14 seconds per pass were reduired with n = 4225, which is about the point at which
this algorithm becomes competitive on seriel computers of current type. The advantage

will be clearer on vector processors.

Linds J. Hayes

Center for Numerical Analysis Texas Instruments

University of Texas P. 0. Box 2909
Austin, Texas 78712 " Austin, Texas 78767

Timing Analysis of Iterative Techniques
for Solving Linear Systems of Equations on the ASC

With the development of parallel processors, questions have arisen concerning which
serial algorithms are directly transferable to parallel processors, which are not, and why
some are better suited for parallel processing than others. This presentation considers
these questions with respect to iterative methods for solving systems of linear eguations
where the matrices are large and sparse, such as those which arise in the solution of ellip-
tic partial differential equations by finite difference methods based on the five point
formula. The algorithms considered are Jacobi, Gauss-Seidel (both with natursl and with
red-black orderings), Successive Over-relaxation (SOR) (both with natural and with red-black
orderings), Sheldon with red-black ordering, Cyclic Chebyshev Semi-iterative (CCSI), Jacobi
Semi-iterative, and Symmetric Successive Over-releaxation (SSOR-SI). Numerical experiments
were performed using these methods with the "model problem" involving Laplace's equation on
the unit square. A primary objective was to determine the effect of the non-parallel se-
quences of code upon the execution times of the algorithms. Timing reults are presented
for all nine methods with mesh sizes of 1/20, 1/40 end 1/80 corresponding to 361, 1521 and
6241 data points. These methods were coded, executed and timed on the Texas Instruments'
pipeline processor, the ASC, located in Austin, Texas.

With the natural ordering the Gauss-Seidel, SOR and SSOR-SI methods have a non-parallel
sequence of code which must be performed separately for each data point, allowing the pipe-
line to completely clear on a pipeline processor. On an array processor such as the Illiac
IV, this sequence of code would allow only one processor to be active. This situation
severly degrades execution speed of these algorithms on parallel processors. Timing results
on the ASC show that these three methods require between 100-T00 percent more execution
time per iteration than the other six methods tested. Techniques are suggested which would
reduce the non-parallel structure of these algorithms, thus inecreasing their speed. These
techniques include re-ordering of mesh points, rearrengement of dats in memory and use of
block SSOR-SI methods which can take advantage of persllel techniques for solving tridiag-
onal systems. . :

Don Heller

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Some Aspects of the Cyclic Reduction
Algorithm for Block Tridiagonal Linear Systems

We consider the solution of the block tridiagonal linear system Ax = v,

ej Xj-—l + d,j Xj + fj xj+l = Vj, j=1,.--,N,
N = g+l -l, mZ 1, e = fN = 0, vwhere the componenté are n xn wmatrices and

n-vectors. By a cyclic reduction algorithm we generate a sequence of problems

; : - . -1+l
A (1) x (1) = 5 (1), i = 1,..., m, of block dimension (2 ™ oy x (2" -1),

with X5 (1) - x 2ij . The solution to system 41 1is used in a back substitution to

obtain the solution to system i-l.‘ let y (k) be an approximation to x (k), and let

¥y be an approximation to x obtained by back substituting ¥y (k). Iet B (1) be the

matrix associsted with the block Jacobi iteration for A (1) x (1) = .V (i), A (o) =4,
B (1) uoc measures the diagonal dominance of A (1). With this notation we have the

following theorem:

Theorem. Suppose || B (©) |, <1 then
1. the cyeclic reduction algorithm is well-defined.
20 Bx-ylee = Nx® -y g,
5. s+ |, = II(Bfi))ellw, 1 = 0,000, m - 1.

This effect of. quadratic convergence allows early termination of the reduction (i.e., k <« m)

when an approximate solution is acceptable and N 1is large.

D. Heller, D. Stevenson, and J. F. Traub
Computer Science Department
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Iterative Solution of Tridiagonmal Systems Using Red~Black Order

We study the parallel iterative solution of tridiagonal systems. Two types of
systems are analyzed. The flrst type are based on additive decomposition. Examples
are SOR and Two-Cyclic Chebyshev iterations. The second type are based on iterative
multiplicative decomposition.

The methods are compared for a number of models of parallel computation. The .
results of numerical experimentation are also reported.

L. Hyafil H. T. Kung

IRTA-LABORTA ‘ Department of Computer Science
78150 Rocquencourt Carnegie-Mellon University
France Pittsburgh, Pennsylvania 15213

Parallel Algorithms for Solving Triangular Linear Systems

The problem of solving triangular linear systems of n equations on parallel computers
such as the ILLIAC IV is considered. Assume that each arithmetic operation takes one‘unit
of time. From previously known results, we know that with O(n)’ processors 'thek problem can
be solved in time O(n) and with O(nB) processors the problem can be solved in time O(logan).
In this paper we ask the following question: How fast can the problem be solved with o(n?)
processors, where O < a < 37 We show that'with O(na) processors the problem can be solved
in time O(n2'a‘10g n) if O<a< 1 and in time O(nl'a/z)loge n) if 3/2¢ a < 3. (See

the table below.)

The basic technique used in this paper is a reduction technique which reduces parallel
algorithms with large parallelism to parallel a.lgoﬁthms with small parallelism. We believe

that similar techniques can be used for many other interesting problems. '

Number of Processors _ Upper Bounds on Time
T o(n®)
o(a?/?) o)
o(n) | o(n)
o(u3/2) O(nl/zlog n)
() o310 0)
of n5 / 2) of n1/6log2 n)

o’y - o(10 w)

Thomas L. Jordan
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544

Some Considerations in Implementing Gaussian Elimination for Dense Systems
on STAR and a New Parallel Algorithm for Diagonally Dominant Tridiagonal Systems.

The problems of Implementing Gaussian elimination for dense linear systems .on the
STAR-100 is considered. First we discuss properties of the STAR-100 that have the most in-
fluence on algorithm performance and then three methods for implementing Gaussian elimina-
tion are discussed. These methods differ in storage assignment, indexing techniques, etc.,
and both positive and negative features of each are discussed. The selected method has an
additional feature in that arithmetic cancellation can be monitored dynamicelly within it.

A new parallel algorithm is given for solving diagonally dominant tridisgonal systems.
The algorithm requires log n parallel steps where each parallel step comsists of 8 multi-
plies, 4 adds, and 1 dividg of wvectors of average length almost n. However, in the case of
strict diagonal dominance, the algorithm may converge in fewer than logyn steps. Hence,
the process may be truncated. Estimates of the STAR-100 time required for systems of
various orders will be made.

Codes are available for the general linear system, the dense symmetric positive defi-
nite case and the diagonally dominant tridiagonal system. These codes are written in
standard FORTRAN and have been checked out on the CDC-7600. The vectorizable portions of
the codes are identified and are written so that a translation to the vector syntax of the
* STAR CDD-FORTRAN is trivial. In each code all floating point arithmetic is implementable
with STAR-100 wvector instructions. p

Ronald Karn

Computer Sciences Corporation

2880 Broadway ,
New York, N.¥. 10025 \

GISS Model Illiac Implemantation

The Goddard Institute for Space Studies (GISS) is rewriting and test-
running its Nine-Level Atmosphere General Circulation Model on the Illiac
IV so as to utilize the machine's parallel/vector capability. The GISS
model, which currently runs on a 360/95, is strongly parallel in the
dimension of longitude. This project will enable GISS to assess the value
of parallel processing as a solution to its‘computing needs.

Utilization of the Illiac posed the following key technical Problems:

1. The relatively small core capacity of the Illiac IV (as opposed to
the 4500K user-available bytes of the 360/95) required a redesign of
the program in order to utilize the disk as a core extension.

2. It was necessary to perform the initial testing with a core-contained
version, since the Illiac disk I/O hardware had not yet been fully
debugged.

3. To produce acceptable resolution, the GISS model required more
longitudes than there are processing elements in the machine.

The GISS solution to problems 1 and 2, which is applicable to any .two-
time-step differencing scheme in which the space differencing involves only
neighboring values, enables the model to run core-contained with 40% less
core or, alternatively, to run with disk extension and 77% less eore. Problem
number 3 could not be solved merely by successively executing the code for
two or more segments of the earth's circumference, because the dynamics of the
atmosphere induce a strong east/west interaction. In a computer implementation
this interaction corresponds to a circular routing with wraparound, which is
non-trivial for vectors of length greater than 64. Each east/west interaction
was therefore implemented in two stages, as follows:

1. Rotating one argument of the interaction by means of a special-
purpose subroutine to bring it into spatial correspondence with the
other argument.

2. Carrying out the necessary computations in segquence for each 64 P.E.
segmant of the two arguments.

As of this writing, (6/10/74) GISS has debugged and run a core~contained
version of the model with 64 longitudes, 31 latitudes and 9 pressures. This
version contains a complete set of hydrodynamic routines, which are concerned
with the continuity and conservation properties of the atmosphere and which
require the bulk of the CPU time and the memory space in a computer implemen-
tation. It does not contain routines for physically more complicated and
relatively lower magnitude processes such as surface friction, solar radiation,
convection, etc. Coding on these "physics"” routines and on extending the
grid is well advanced. With the core-contained version initial measurements
show a factor of 6 speed improvement over a comparable version on the 360/95.

Tadashi Kishi and J. Wirsching
Lawrence Livermore Laboratory,
University of California
Livermore, California 94550

Vectorization of Particle-Pusher Codes

This paper addresses itself to a vectorized computational procedure that is applicable to the
class of particle simulation models that are critically important in future controlled fusion
research. Historically, plasma physics codes have evolved from small grids and simple physics to
larger and larger grids with more complex physics. Currently, particle-pusher models, which follow
a large number of charged particles under the influence of self-consistent electric and magnetic
interactions, already tax the resources of such computers as the CDC 7600 and IBM 360/195. Until
now, not much attention has been given to the computational procedure because the computer speeds
have been quite adequate. With the advent of the highly parallel 'vector" type computers such as
the ILLIAC IV, STAR, and ASC a new problem has arisen: The computational procedure currently in
use is not easily or efficiently adaptable to this class of machines. It is our intention to
describe a method that may be efficient for 'vector" solution of plasma and particle in cell codes.

The computational procedure of particle-pusher codes involves three phases: (1) the motion
of particles dependent on local electrostatic and magnetic field quantities, (2) updating of the
charges distribution resulting from the motion of the particles, and (3) solution to Poisson's
equation of the new charge distribution to provide new magneto-static quantities. The problem that
occupies a great portion of the "particle-pusher" type code is basically a table look up procedure
in which the values to be retrieved are found to be essentially random in their location in the
table. To a serial computer this is no drawback, but to a vector computer the process is highly
inefficient. Although the table look up has even been put into hardware on the STAR, this does not
ensure high performance. :

The answer to the dilemma is to develop, if possible, a way of efficiently creating centiguous
vectors out of random processes. The method described in the report attempts to do this. The
factors that help in our proposed procedure depend first, on such concepts as sparce-vector
operations, control bit vectors, and compress which are common to the STAR, ASC, and ILLIAC IV
computer systems. Second, rather than process from the particle point of view, if we consider a
given cell and its associated set of particles, a particle will not skip entirely over a
neighboring cell in one time step and the order in which the particles are kept or processed is
immaterial. :

The problem is the accumulation of a charge at the grid points. Thus, if any success is to
be gained in vectorizing the process, all of the particles in each cell must be made into a
contiguous vector. There are certain trade-offs that must be made since this method introduces
processing that a serial computer does not have to do. There are some mitigating circumstances
even there, in that serial machines are heavily engaged in index and address arithmetic which would
be obviated by the method described. o

John C. Knight

Analysis and Computation Division
NASA Langley Research Center
Hampton, Virginia 23665

Vector Processors:
Control Data Corporation's STAR-100 and
Texas Instruments' Advanced Scientific Computer

These machines are termed vector processors because their hardware is

especially designed to enable them to perform vector arithmetic at relatively

high speed. At the heart of both are segmented execution units, and these -are
augmented with sophisticated main storage capable of considerable bandwidth. 1In
anticipation of scientific workloads involving large amounts of data, high per-
formance backing storage devices have been developed to support these systems.

The concept of distributed computing, whereby several powerful satelite processors
take over many of the routine support tasks, is exploited heavily by both machines.

A segmented execution unit, or "pipeline", is constructed as several sub-
units which are organized as a production line. At any given time, each subunit
may be operating on a different pair of operands, but the desired result only
becomes available when a given pair of operands has passed through all the
subunits. Thus, a single operation may teke several time units to complete, but
a sequence of similar operations can be performed rapidly. Usually, one result
is produced per time unit once the first result leaves the pipeline. Much
higher result rates are possible with this technique than are possible with a
conventional execution unit.

The key to the effective use of such hardware is the concept of vector
instructions. A vector is a sequence of like objects (e.g., floating point
numbers), and a vector instruction initiates a sequence of like operations.

Both CDC's STAR-100 and TI's Advanced Scientific Computer employ segmented
execution units and provide vector instructions. The instruction sets include
the commonly occurring monadic and dyadic arithmetic operators, and several other
operators which are usually only found in software.

The STAR-100 is equipped with hardware to deal directly with sparse vectors.
A sparse vector is stored as a set of nonzero elements together with a bit vector.
In addition, the elementg of the result vector produced by many instructions can
be stored selectively under control of a bit pattern known as a control vector.

The ASC has the useful capability of being able to encompass three dimensions
of addressability in a single vector instruction. .This is the equivalent of a
nest of three indexing or "DO" loops, and allows matrix multiply to be written
as one instruction.

John C. Knight William ¢. Poole, Jr. Robert G. Voigt

Analysis and Computation Div. ICASE and ICASE
NASA Langley Research Center College of William and Mary NASA Langley Research Center
Hampton, Virginia 23665 Williamsburg, Virginia 23185 Hampton, Virginia 23665

Configuration Analysis of the STAR-100 Based on Typical Numerical Problems

The STAR-100 central processor is capable of result rates which are considerably in
excess of thos? of presently available computers. In order to be a competitive machine
for scientific computing the STAR-100 must be able to sustain this result rate on very
large data bases. This raises the guestions of (a) whether the result rate will be
severely limited by the ability of the peripheral devices to support thé central proces-

sor, and (b} what data organizations are most suiteble for secondary storage.

In order to provide some insight into these questions a problem was selected which is
representative of large scientific computing. In particular we examine the solution of a
banded system of linear equations using a vectorized version of Cholesky's .algorithm. We
also assume that there are at least an order of magnitude more non zero elements than main
storage locations. Two approaches to this problem were compared: (a) treating the banded
system in its entirety, (b) using the concept of substructuring or, equivalently, block

decomposition in which several smaller banded sysiems are considered.

Timing of the algorithms shows that the input/output (I/b)krequirements‘are counsidera-
bly greater then the capebllities of existing rotating storage devices assuming a random
access pattern. However, careful data layout so as to eliminate rotational delays and seek
times of available discs leads éo a balance of I/0 and computation in the decomposition
steps of the algorithms. On the other hand, even the optimum layout leaves the forward

and back substitution phases I/0 bound.

H. T. Kung

J. F, Traub

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa, 15213

Methodologies for Studying the Speed-Ups Gained from Parallelism

Let “’ be a class of problems to be solved and for each p € P 1let A(p) be the probability that
we want to solve p., In this paper methodologies for measuring the expected gain in speed due to
parallel processing, for a class [P with a probability function A, are investigated,

For each p € P and each positive integer k, let T, (p) be the minimum time needed to solve p
with k processors. The following two measures of speed-ups gained from parallelism are proposed:

2 A(p)Tl(p)
SAde’U > A (p)T, (p)°
peP

as, @ ,0) ()T‘(P)
‘ S ,k = Z)\ p ——
k PEP Tk(p)

It is shown that both measures are reasonable. The use of any particular measure depends on the ap-
plication. However, only the second one is suitable for measuring the asymptotic gain in speed as
'k » ®, To illustrate our methodology, we show that for the polynomial evaluation problem the speed-
up according to the second measure can be either O(log k) or 0(1) as k » =, depending on the proba-
bility function, :

Jules J. Lambiotte, Jr.

Analysis and Computation Division
NASA Langley Research Center
Hampton, Virginia 23665

Band and Profile Factorization Methods on the STAR-100 Computer

For the symmetric positive definite matrix A, where A has sparsity structure
suitable to band or profile storage schemes, the factorization as A=LDLT for D
diagonal and L unit lower triangular is considered for the STAR-100 vector
computer. PFor A banded, the vector implementations of the Root~Free Cholesky
(RFC) method and the Symmetric Gaussian Elimination (SGE) method are discussed.
The desire to perform vector operations within the solution process greatly
influences the order in which the coefficients within the band are stored. It is
shown that two different storage strategies are required for the two methods, and
that they differ from the usual strategy on a serial computer. Timing information
for the STAR-100 is used throughout, and it is shown that the RFC method is faster
than the SGE method for matrices with small bandwidths, but slower for larger
-problems. The vector implementation of the two substitution processes, Ly=b and
LTx=D~ly to solve Ax=b, is discussed and it is shown that different computational
procedures are required for the two substitutions due to storage considerations.
Also included is the analysis of the substitution procedures when a large number
of r1ght~hand sides exist.

The ‘profile storage and computation scheme offers an alternative to band
methods to take advantage of certain zero coefficients which may exist within the
band. The vector implementation of this method on the STAR-100 using an inner
product formulation anslogous to RFC is considered. The banded and profile
implementations are compared for a model finite element mesh and it is shown that
except for wvery simple elements, the profile approach is expected to be faster.
However, due to vector startup time, only as the number of elements in the mesh
goes to infinity do we achieve the total gain in speed predicted for the profile
. method over the banded method by the serial operation count.

Jules J. Lambiotte, Jr.

Anglysis and Computation Division
NASA Langley Research Center
Hampton, Virginia 23665

An Tmplementation for the ADI Method on the STAR-100 Computer

The alternating direction implicit method (ADI) for solving elliptic partial
differential equations presents computational advantages on a serial computer
since, for a model nxn mesh, each half iteration involves the solution of n
tridiagonal systems of size n, a task which can be accomplished efficiently on
such a computer. However, it has been shown that the usual solution process
(Gaussian Elimination) for a tridiagonal system of equations does not lend
‘itself to vector computation, and that none of the proposed parallel algorithms
show a substential increase over a scalar implementation on STAR until the size
of the system becomes large. In addition to this, there is an added difficulty
for implementation of the ADI method on STAR. That is, given a particular
solution algorithm, a particular direction of implicitness, and the appropriate
ordering of the mesh points to induce the desired storage for the solution
algorithm, then when the direction of implicitness is alternated, the opposite
ordering of the mesh points is required for that algorithm. This involves the
transpose of the solution matrix of the grid points which is a slow operation on
STAR even if all the data is core contained. If not all the data is core con-
tained, it becomes considerably more inefficient. 1In order to avoid the necessity
for the transpose operation, a mixed solution algorithm is proposed consisting of
a different solution approach for each direction of implicitness. Two vector
algorithms for solving o independent nxn tridiagonal systems are discussed. The
first considers the systems as stacked one behind the other and solves all o at
the same time using the usual serial algorithm but on vectors of length o. The
second consists of adding zero coefficients to artificislly couple the o systems
to construct one new tridiagonal system of size N=ng. Odd-even reduction, which
is known to be efficient for matrices with large N, is employed to solve the
system and it is shown that, in addition, only logpn steps are required in the
factorization instead of the expected log,N. It is then shown that the relation-
ship of the required direction of storage to the required direction of implicitness
for the two algorithms is such that it is no longer required to transpose the
solution matrix.

T ki o]
NASA Langley Research Center NASA Laﬁgley Research Center
Hampton, Virginia 23665 Hampton, Vlrginla 25665

500 Y f&w*w' i

A R

require only 0() ‘

By placing conditions on the linear systems such as diagonal dominance we may consider
iterative methods. We compare a parallel algorithm introduced by J. Traub with Jacobi's
method, SOR, end the best of the direct methods, cyclic reduction. The conclusion is that

the direct method is, in general, superior.

The comparisons made in this paper are based on codes written at the hardware instruc-
tion level end timed using the latest timing information for those instructions supplied

by Control Data Corporstion.

Joseph W.H. Liu
Department of Applied Analysis & Computer Science
University of Waterloo
Waterloo, Ontario, Canada

THE SOLUTION OF MESH EQUATIONS ON A PARALLEL COMPUTER

This paper discusses the applicability of "nested dissection" in the parallel solution .
of mesh systems by symmetric elimination. In our analysis, inherent parallelism is exploited on
a computer model that is assumed to have an unlimited number of arithmetic processors.. Each
processor cah perform any one of the binary operations in unit time. They obtain their
instructions from a single instruction stream, so that they execute this same instruction, but on
different operand pairs (single instruction stream, multiple data stream).

For systems associated with_an n by n regular mesh, it is known that elimination using
a nested ordering, which requires 0(n3) multiplications and 0(n2l0g,n) storage locations on
sequential computers, is optimal. In this paper, we show how the dissection techniques can
speed up the computation in its direct solution on our hypothetical parallel computer. A mesh
dissection divides the mesh into several disconnected components through some separating set of
nodes. Parallel elimination can then be performed on the independent matrix blocks corresponding
to the components. The factorization process will be completed by eliminating the nodes in
the separating set. By a recursive use of this idea, it is shown that nested dissection when
coupled with parallel elimination requires O(n) arithmetic operations to factor an n by n mesh
system. Parallel substitutions of independent blocks allow the final solution to be obtained in
again 0(n) operations. :

We also introduce the doubly nested dissection technique, which uses two "layers" of
separating nodes as the dissector. In the context of parallel elimination and substitution,
it turns out to be a more practical way of dissecting the mesh since doubly dissection enables
blocks to be factored and substituted in a completely independent manner. Again, 0(n) parallel
operations are required for the complete solutijon by doubly nested ordering.

Niel K. Madsen

Lawrence Livermore Laboratory
Numerical Mathematics Group
Livermore, California 94550

Numerical Solution of Parabolic Partial Differential
Equations on a Vector Processor

In this paper we consider some of the problems associated with cbtaining efficient
numerical solutions to a general class of parabalic partial differential equations
in two space dimensions. In the past, it has been true that for most parabolic
problems, implicit time discretizations were a necessity. The stability restrictions
on time step sizes imposed by the explicit methods were simply so severe that these
methods are not extensively used for parabolic problems.

On a vector processor such as the STAR-100, the expllclt methods are very appealing
because they may usually be implemented and run in an easy and efficient manner. In
contrast, the implicit methods require the solution of a system of linear equations and
are thus not as easy to efficiently implement on the STAR-100.

Much research is currently taking place to find appropriate methods for solving
general systems of linear equations. However, the answers to this problem are as yet
unclear. With the efficient solution of these general linear systems somewhat in
doubt, the question of explicit versus implicit methods must again be reopened. We
consider this question and conclude that the class of problems which may be effectively
solved on vector processors by use of explicit methods has been broadened but still
does not include many types of problems that are frequently encountered.

Finally, we describe the structure of a general purpose program designed for the
STAR-100 which solves a fairly broad class of parabolic partial differential equations
in two space dimensions. The program has some unique features such as variable order
implicit time integration methods, automatic time step selection, time integration
error controls, and is very easy to use and quite reliable.

Stephen G. Margolis

ASEA-ATOM Visterfs Sweden

and State University of New York
Buffalo, New York 14226

Computing One-Dimensional Fluid Dynamics on Parallel Processors

Assessment of the safety of nuclear power plants requires the solution of.the equations
of one-dimensional fluild dynamics over a variety of time scales, ranging from milliseconds
to hours. Both explicit and implicit methods have béen used. The explicit methods ére
limited to time steps of milliseconds by the Courant-Friedrichs—Lew& Condition. Thus use
of such methods to calculate phenomena lasting hours is extremely costly. Implicit méthods
are not limited to short time‘steps, but require rather longer computing times per time
step because of the required solution of linear systems, which are often block tri-
diagonal. Thus the use of implicit methods for problems on short time écales is inefficient.
It is desirable that a single method be used, however, since often the same problem must
be examined on both long and short time scales. Motivation then exists to find accurate
and efficient implicit methods. H. 5. Stone has recently shown that tridiagonal systems
can be solved efficiently on parallel processors. (H. S. Stone, "An Efficient Parallel
Algorithm for the Solution of a Tridiagonal System of Equations", J.ACM 20, 27 (1973)).
With this development, implicit methods become practical for problems on both iong and
short time scales. In this paper, we describe a particular implicit method and test it
for its accuracy in a shock-wave calculation. A generalized Crank Nicholson Method is
used, in which space-derivatives are approximated by a weighted average of‘space differences
at "old" and "new" times. Best results are obtained when the "new"” space differences
are given a weight of O0.7. Momentum flux is approximated using a non-linear method (zzP
differencing) which has advantages in symmetry and accuracy over other methods. Results
indicate that the method is sufficiently accurate, and with the availabilit} of parallel
processors ought to be sufficiently fast, to permit use of implicit methods on all time

scales.

L. McCulley and G, Zaher
Informatics Inc.

3971 East Bayshore Drive

Palo Alto, California 94303

Heat Shield Response to Conditions of Planetary Entry Computed on the ILLIAC IV

Temperature within a reflecting, ablating material subject to convective and
radiative loading satisfies in one dimension a non-linear diffusion equation of the form
Tt = a{x, T) Ty + blx, T) Ty + c(x, T). Quantitative correlations of loading to material
behavior at the surface are obtained from a preliminary shock layer calculation for
simulated entry into a model atmosphere. The surface boundary condition for the
diffusion equation is derived from these correlations, Subsurface absorption of rad-
iation is expressed by the distributed source term c(x, T). Temperature profiles are
obtained numerically at discrete points in time by solving the penta~diagonal linear
system resulting from second order finite difference approximation of the diffusion
equation at each of sixty-four non-uniformly distributed mesh points, Three candi-
date methods for solution of this linear system are implemented and evaluated:

(1) a direct method derived as an extension of H, S. Stone's method for tri-diagonal
systems (JACM, Vol, 20, No, 1, Jan, 1973, pp. 27-38), (2) Jacobi's iterative method,
and (3) a modified Jacobi method which converges more rapidly. The direct method
proves to be least efficient of the three, The iterative methods are comparable in
this application, with each exhibiting superiority at different points within a single
case run. A further consideration is the need to solve a system of radiative transfer
equations for evaluation of subsurface absorption, Because scattering and absorption
for the shielding material considered here are temperature and frequency dependent,
the usual analytic solution is not available and these equations must be solved numeri-
cally for each of the twenty radiation bands important in this problem, Numerical
formulation of the problem gives rise toa block (2 x 2) tri-diagonal matrix equation,
Solution by parallel methods gsimilar to thogse above is discussed, Itisshown however
that simultaneous solution for all bands, by assigning individual processing elements
the common serial task of solution for a single frequency, is more efficient,

© Ahmed K. Noor Susan J. Voigt
George Washington Structures & Dynamics Division
University Center
NASA Langley Research Center
Hampton, Virginia 23665

A Hypermatrix Scheme for a Finite Element System
on the STAR-100 Computer

In apnlying the finite element method to analysis of comnlex structures, the resulting
large matrices do not fit completely in the core storage of the computer. It is necessary,
therefore, to subdivide these matrices to perform the calculations. 1In studying the potential
use of the CDC STAR-100 computer for solution of structural analysis problems, the hypermatrix
scheme appears to be especially well-suited. The hypermatrix (or block matrix) technique is
based on nartitioning the structural matrices in both the row and column direction. Then,
operations are performed on the submatrices. An address (or pointer) matrix is used to identify
the locations of the different elements (e.g., submatrices) in the hypermatrix. A zero eantry in
the address matrix denotes a zero submatrix which is neither built nor stored; i.e., the hypermatrix
scheme provides a macro representation of the snarsity pattern. The subdivision of the matrix may
follow physical reasoning, or it may be selected according to other considerations. For example,
one submatrix may contain all degrees of freedom of a particular node, element, or a substructure;
or subdivision may follow from consideration of the sparsity pattern of the matrix to use central
memory efficiently for a specific problem.

The hypermatrix scheme has been used on current scientific computers combining a number of
advantages over other techniques of handling large systems of equations. 1t provides an effective
way of using the backing store for management of the large quantities of data in finite element
systems. It allows a controllable ratio between CP and 1/0 times, and it provides versatility
in the sense that the core storage requirements are indenendent of the problem type and size.

The scheme has been incorporated into a number of large general purpose finite element structural
analysis computer programs including ASKA, DAISY, and SESAM-69.

The objectives of this paper are to study the adaptation of the hypermatrix scheme to the
CDC STAR-100 computer and to examine alternative strategies for exploiting the special capabilities
of the STAR computer. The restricted locality of data reference inherent in the hypermatrix
scheme appears quite attractive for the effective use of the virtual memory facility. Discussion
is focused on the organization of the hypermatrix computation and the mode of storage of the
different submatrices to take advantage of the STAR pipeline (streaming) capability using the
Gaussian elimination and Cholesky decomposition procedures. Consideration is also given to
associated data handling problems and means for reducing the page faults in the solution process.
Results of operation counts are presented showing anticipated gain in speed over the CDC 6600
to be obtained by using the proposed algorithms on the STAR computer.

Marshall C. Pease

Computer Sciehce Group
Stanford Research Institute
Menlo Park, California 94025

A New Algorithm for Linear Equations and Matrix Inversion

A new algorithm for solving linear equations or for the inversion of a matrix is presented.
The algorithm is essentially parallel in nature. The basic operation is the component product of
two vectors, which is the vector whose k—-th component is the product of the k—th components of the
two vectors., Hence the algorithm is well adapted for execution on a parallel computer such as
ILLIAC IV, or on a machine constructed as a network of microcomputers, where the network connections
and control are of the type used in ILLIAC IV,

If the efficiency of the algorithm is measured by the count of individual multiplications
without regard for parallelism, it is less efficient than Gauss' algorithm, but not seriously so.
The ratio of the count of multiplications to that of Gauss' algorithm is approximately (1 + logzn)
for matrix inversion, and (3/4) logzn for linear equations, if the matrix is (n X n).

The generality of the algorithm is not complete--there do exist non-singular matrices that can-
not be inverted by the algorithm since one or more of the operators used are singular. In principle
even these cases can be handled with a suitable variation of the algorithm, but there seems to be no
practical way of discovering what is the appropriate variation. Neither does there seem to be any
practical way of identifying, a priori, those matrices for which it will fail. Fortunately, such a
failure happens only under pathological conditions with vanishingly small probability of occurrence
for matrix classes that are likely to be important, Further, if a failure should occur, this fact
would become evident almost immediately. It does not lead to an incorrect solution, but rather to
the absence of any solution, Hence the possibility of failure of the algorithm does not seem likely
to interfere with its practical use.

The significance of the algorithm is that it expands the range of applications for which the
specified type of parallel architecture can be used effectively. Such architectures may be said to
address directly such problems as the solution of partial differential equations under assumed
boundary conditions. The algorithm presented here makes that type of parallel architecture useful
also for applications requiring the solution of linear equations or matrix inversion.

John R, Rice ¥

Division of Mathematical Sciences
Purdue University

West Lafayette, Indiana 47907

Parallel Algorithms for Adaptive Quadrature II - Metalgorithm Correctness

A metalgorithm (or perhaps metaprogram) represents a class of algorithms and previous papers
have established convergence results for sequential [1] and parallel [2] adaptive quadrature compu-
tations. These results may be paraphrased as follows: "If all the algorithms represented by the
metalgorithm satisfy certain assumptions, then a certain rate of convergence takes place." The
assumptions are fairly simple in nature and the results are typical mathematical convergence theorems.

They do establish the exceptional power of adaptive quadrature to handle badly misbehaved integrands
without loss of efficiency.

The utlimate goal 1s to prove convergence for an actual computer program and this paper repre-
sents the second level of analysis. A much more concrete metalgorithm is described and it is proved
that it is contained in the earlier, more general metalgorithm. This metalgorithm involves
NCPU + 2 central processors, NCPU of which execute basic quadrature computations. The other two
represent the operating system and the algorithm controller. The metalgorithm contains 9 programs
and a variety (38 in all) of attributes are assumed about these programs. The metalgorithm also
contains assumptions about the allocation of memory and the timing of various processes (it is an
asynchronous, multiple-instruction-stream, multiple-data-stream computation). Once we prove that
this metalgorithm is contained in that of [2], then we have the convergence result established; a

subsequent paper will contain a program PAFAQ and a proof that it is represented by the present
metalgorithm.

The present metalgorithm is detailed enough that the mechanisms are presented for preserving
the integrity of the data structures in the concurrent programming environment. A key point in the
third level of proof involving PAFAQ will be to show that these mechanisms are correctly implemented.
An unusual property of this metalgorithm is that algorithmic convergence rather than mathematical
convergence is established. That is, any algorithm represented by this metalgorithm has an accuracy
requirement as input and the algorithm will terminate and print a quadrature estimate that meets
this requirement. This is achieved by having a characteristic length of the integrand as input
data. The role of the characteristic length of a function (relative to an algorithm) in proofs of
algorithm effectiveness is introduced in [1].

[1] Rice, John R., A Metalgorithm for Adaptive Quadrature, J. ACM to appear.

[2] ————————, Parallel Algorithms for Adaptive Quadrature - Convergence, Proc. IFIP '74 to
appear.

* Work supported by Grant GP32940X from the National Sciencé Foundation.

Richard F. Riesenfeld
University of Utah
Salt Lake City, Utah 84112

Computer Graphics as a Parallel/Associative Process

Computer graphics stands out as an area in which most of the basic
algorithms exhibit a highly parallel nature in the sense that a single
operation is typically performed on an entire data file representing
an object for display. The most primitive manipulation transformations
(translation, rotation, scaling, shearing, persepective) are effected by
applying a 4 x 4 - matrix to each point of the object, a process which
could usefully occur concurrently. Furthermore, the data file can often
be generated in parallel if it is derived from a closed form equation like
a Coons patch, or a B-spline surface. Similarly Gouraud/Phong-type shading
lends itself to parallel computation. Even the recursive algorithms for
surface rendering like Warnock's or Catmull's Algorithm could run as a
parallel instead of a serial process.

Other standard graphics algorithms like hidden surface removal and
clipping can be stated in terms of associative processes: Flag all polygons
in a file that possess property P.

The most immediate conclusion is that the advent of parallel processors
could have a profound effect on the formulation of computer graphics
algorithms. Moreover, since real-time interactive graphics is still on the
fringes of present hardware capabilities, parallel machines could easily be
used to make real-time response a common phenomenon. Finally, a ''graphics
language'' that allows the user to specify the parallel and associative
operations as simple statements would be needed to make convenient use of
these features. In short, computer graphics is very amenable to parallel
processing.

Ahmed H. Sameh and David J. Kuck

Center for Advanced Computation
and Computer Science Department
University of Illinois
Urbana, Illinois 61801

A Parallel QR-Algorithm
- for Symmetric Tridiagonal Matrices

An iteration of the QR-algorithm for a symmetric tridiagonal matrix A may be des-
cribed as follows:

(a) for a suitably chosen origin shift kr(r=l,2,...) we reduce the matrix
(A - k_TI), where A1 = A, to the upper triasngular form using an orthog-
ondl transformation Qr’

Q. -k I) =R, r=1,2,...
(b) the next iterate A ,, is then given by
- t
A T RS

so that the symmetric tridiagonal matrix A . is similar to (Ar - krI)’

i.e., similar to (A

r .
= s kiI) rather. than Al.

i=l

Assuming that Ar is of order n, it has been shown that the above iteration on a serial
computer requires 4n additions, hn multiplications, 3 divisions, and no square roots.

In this paper we are concerned with parallel computation, and assume that our
parallel computer satisfies the following:

(i) any number of processors may be used at any time, but we will give
* bounds on this number.

(ii) each processor may perform any of the four arithmetic operations in
one time step. ’

(iii) +there are no memory or data alignment time penalties.
The orthogonel matrix Q. is obtained as the product of {n-1) Givens transformations.
Assuming that Ar S [Bi, s Bi+13nxn’ then Givens transformations are given by,

53 % Bin/My

e, = (aici_l - Bisi_lci_z)/yi i=1,2,...,n =1

where s, = 0, ¢, = 1. We show that ¢, and s, can be obtained by solving two successive
linear recurregce relations of the sécond afd first orders, respectively. Thus, part

(a) of the iteration requires (8 + 5 log.n) steps using no more than 4n processors.
Similarly, we show that part (b) require§ (5 + log.n) steps and two square roots using

no more than (2n-1) processors. Hence the total pérallel computation time of the itera-
tion is, T = (13 + 6 logzn) steps with p = hn processors. Since the serial time T, = 1ln,
then the sBeedup over the serial computation is given by,

SP = Tl/'I‘p & 2n/log2n

with an efficiency of,

Ep - Sp/p = 1/(2 1og2n).

Ahmed Sameh and Terry Layman
Center for Advanced Computation
University of Illinois
Urbana, Illinois 61801

Toward an ILLTIAC IV Library

An effort for writing a collection of numerical algorithms suitable
for Illiac IV has been going on for more than two years at the Center
for Advanced Computation at the University of Illinois. This collection
of some 20 algorithms was intended to serve as a nucleus for an Illiac
IV scientific subroutine library. These algorithms, which are coded in
either Illiac IV assembly language ASK or the higher level language
GLYPNIR, have all been checked out in a limited way on the Illiac IV
simulator {(on the Burroughs B6700 at UCSD in San Diego). Only limited
checking could be done because of the extremely slow rate of simulated
execution. Testing of these codes on Illiac IV itself has only recently
begun.

Algorithms designed for (mostly core-contained) problems in the
following application areas have been developed:

A. Solving systems of linear equations

B. Finding the eigenvalues and eigenvectors of real,
symmetric tri-diagonal matrices

C. Solving a limited class of elliptic P.D.E.s

D. Computing Fast Fourier Transform

E. Solving Poisson's equation on a rectangular region

F. Finding the real roots of real polynomials

G. Linear Programming

In this paper we discuss the implementation of four routines for the
eigenvalue problem:

1. A parallel Jacobi method for finding all the eigenvalues
and eigenvectors of a real symmetric matrix (core-contained).
[JACOBI]-GLYPNIR

2. A multisectioning method for finding the eigenvalues of a large
symmetric tridiagonal matrix (core-contained). [MULTISEC]-GLYPNIR

3. A routine to find the eigenvectors corresponding to given
eigenvalues of a large symmetric tri-diagonal matrix (core~
contained). [TRIVEC]-GLYPNIR

4. A combination of a slightly modified JACOBI and a routine to
reduce a real matrix (N§128) to a normal matrix using similarity
transforms ([EBER]-GLYPNIR) which calculates the eigenvalues
and eigenvectors of real nonsymmetric matrices (core-contained).

Furthermore, we will present results of several test programs on the
Illiac IV itself, and timing comparisons between these parallel routines
and the equivalent serial algorithms, namely those ALGOL programs edited
by Wilkinson and Reinsch in the second volume of the Handbook for :
Automatic Computation.

James R. Schiess

Laura C. Jackson

NASA Langley Research Center
Hampton, Virginia 23665

Sequential Filtering Algorithms for the STAR Computer

One of the major problems in modern engineering and science is the
estimation of the state variasbles of a mathematical model of an observed
dynamical process. For such problems, large quantities of measured data
are often processed by a Tiltering scheme; additionally, the mathematical
model may be a highly complex one containing dozens of variables. Because
of the possible enormity of such problems, a vector processing computer,
such as the STAR computer, provides a potential means for decreasing the
computational effort and time required to process data and arrive at an
acceptable solution.

In the present paper attention is restricted to adaptation of currently
available linear filtering schemes to vector processing computers. Since
it is standard practice to linearize nonlinear matheématical models of dy-
namical systems before applying filtering techniques, the conventional
notation of linear models is briefly presented. The Kalman-Bucy filter
is introduced as the standard filtering method, and two modifications of
this method and the Potter "square root" filter are presented as alternative
approaches. Efficient implementation of the individual stages of these
filters on a vector processing computer is considered with emphasgis placed
on the number of required operations. Although on conventional scalar
computers the Potter filter requires 30% more central processor time than
the Kalman-Bucy filter, the analysis indicates the Potter filter is a
competitive alternative on a vector processing computer. This is parti-
cularly advantageous since the Potter filter was designed to avoid certain
divergence problems which arise when the Kalman-Bucy filter is applied to
large amounts of data.

Harold S. Stone
Tniversity of Massachusetts
Amherst, Massachusetts 01002

The Stracture and Use of Array Computers

The array computer is much like a conventlional computer except that it operates on
vectors of data in the way that a conventional computer operates on single items. One of
the foremost examples of the array computer is the ILLIAC IV computer, nbw installed at
NASA Ames Research Center.’ It has 6 separate processors, and thus operates-natufally on

vectors of length 64 or multiples thereof.

The architecture of the array computer imposes severe constraints on programs if they
are to run efficiently. Preéently it is known that some problems can be solved very effi-
ciently, and that there exist no methods whatsocever to solve others efficiently. By far the,
largest class of problems are those for which it is still uncertain ﬁowito solve them effi-

ciently with an array computer or if indeed a method exists.

For an array computer to be effective on any particular problem, the problem must satis-
fy at least the three following characteristics:
1. The computation must be describable as a sequence of vector operations.
Thet is, all arithmetic operstions performed at any given moment are identical.
2. If the computation requires date to be communicated among processors, then
the date. flow must be supportable by the existing processor-to-processor connec-
tions. ' '
3. When several operands must be manipulated simulteneously they must be stored
in different processors to prevent memory conflicts when they are accessed.
We explore some features of the ILLIAC IV and some techniques for programming array

processors that have greatly enlarged the class of problems that satisfy these three con-

straints.

John C. Thompson

Computing Sciences Department
University of Oklahoma

905 Asp Avenue

Norman, Oklahoma 73069

Implementation of Sophisticated Constitutive
Equations on the ILLIAC IV

There are a number of problems concerned with the simula-
tion of ground motion response to explosive loading whose
running time on current serial machines is excessive. These
simulation programs which use finite difference and finite
element techniques to integrate the equations of motion also
require sophisticated equations of state to model media response.
The programming of these constitutive relations on a parallel
machine is challanging because in general, the state of the
material depends on the current value of one or more deformation
variables such as strain as well as the past stress history of
the material. Therefore to calculate the current state of
stress using the full ILLIAC IV Array, we must consider some
cells to be loading while others are unloading. In the materials
of interest, these two types of behavior obey different
stress-strain relations.

The particular constitutive models studied in this paper
were: a general non-linear hysteretic material, the variable
modulus model of Nelson, the Cap model of Demaggio and Sandler,
and a brittle faildre model suggested by Cooper and the author.

To develop parallel algorithms for all of these models,
each phase of the material behavior was written in the same
functional form so that, for the most part, different
material states were distinguished by a choice of parameter
values rather than different logic paths. The language used
was CFD. General estimates of the efficiency of each program
and the speed increase resulting from parallelism are given.

8. M. Yen, D. S. Watanabe, and J. R. Flood
Coordinated Science Laboratory '
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Implementetion of Finite Difference Schemes for Solving
Fluid Dymemics Problems on ILLTAC IV *

We have used a conventional computer to study storage schemes and the treatment of joints
that occur when more than 64 nodes are used, methods of minimizing the number of arithmetic
operations required in parallel computations, methods of exploiting the parallelism implicit in
any difference scheme, and methods for efficiently handling boundary conditions. We have examined
one-dimensional problems which are useful in determining the effectiveness of parallel computa-
tional strategies. ~ ’

In a problem with more than 64 nodes, we must devise appropriate storage schemes and optimize
the evaluation of arithmetic expressions. In considering the interior calculatiom, straight
storage seems most appropriate. We can use indexed addressing and routing to fetch any desired
vector operand. A sample ILLIAC IV code to illustrate this process was written,

ILLIAC IV is a vector processor that operates on 64 element vector operands and can perform
the usual arithmetic binary operations. The machine is operating "efficiently" when each binary
operation produces a vector, most of whose elements were not available before and which are useful.
To facilitate our study of a given difference scheme, we associaste a graph that symbolically
represents the sequence of arithmetic operations required by this formulation. By examining the
graph, we can determine whether the formulation can be efficiently implemented on the ILLIAC 1IV.
This approach allows us to evaluate schemes without writing actual codes.

We have analyzed several difference schemes and have found that all of these schemes can be
implemented efficiently if they are cast in a multilevel formulation, Redundant computations are
eliminated if the operations required at a given level are performed for the whole flow field
before proceeding to the operations at the next level. However, this process requires extra
storage. In multi-dimensional problems, the trade off between this extra storage and the elimina-
tion of redundant computations must be examined carefully.

A problem which occurs with any size blocks of nodes is the treatment of nodes near the
boundaries. Suppose we have boundary conditions fixing values of dependent variables and we are
using a difference scheme which is so "wide" that it cennot be used near the boundary. Suppose we
use a scheme for these points that is of the same complexity as the interior scheme. Then in the
worst cese, if each scheme requires m operations, we need 2n operations to handle the boundary
point and the next 63 interior nodes. We wish to find schemes for near boundary points that can
be "imbedded" in the interior scheme so that both can be evaluated in one instruction stream of
length n + m, ®W << M.

We studied two "imbedded" or hybrid schemes by examining their performances on an one-
dimensional flow produced by an accelerating piston whose position is given by xp(t) = t3.
The hybrid schemes used were Cheng-Allen/MacCormack and Cheng-Allen/Predictor. The Cheng-Allen
method was used for the interior nodes in each case, Cheng-Allen/MacCormack uses MacCormack's
method near the boundaries. An analysis of the error norms indicated that the overall accuracy of
the scheme was still second order, although the accuracy near the boundaries was degraded. Our
results seem to indicate that in general the combination of schemes of the same order in this
mannmer do not reduce the order of the method; however, the stability of the hybrid schemes may be
affected. However, no tendency toward instability was observed in these tests, Although the
results of the tests were satisfactory, the performance of the hybrid schemes did not achieve that
of the MacCormack method alone. In fact, for the inviscid piston problem, the simpler formula and
higher accuracy of the MacCormack method would outweigh any increase efficiency in computation for
a hybrid method,

*Research supported by the Office of Naval Research under Contract N00014-67-A-0305-0019.

